martes, 15 de octubre de 2013

Historia del diodo

Aunque el diodo semiconductor de estado sólido se popularizó antes del diodo termoiónico, ambos se desarrollaron al mismo tiempo.
En 1873 Frederick Guthrie descubrió el principio de operación de los diodos térmicos. Guhtrie descubrió que un electroscopio cargado positivamente podría descargarse al acercarse una pieza de metal caliente, sin necesidad de que este lo tocara. No sucedía lo mismo con un electroscopio cargado negativamente, reflejando esto que el flujo de corriente era posible solamente en una dirección.
Independientemente, el 13 de febrero de 1880 Thomas Edison redescubre el principio. A su vez, Edison investigaba porque los filamentos de carbón de las bombillas se quemaban al final del terminal positivo. El había construido una bombilla con un filamento adicional y una con una lámina metálica dentro de la lámpara, eléctricamente aislada del filamento. Cuando uso este dispositivo, el confirmó que una corriente fluía del filamento incandescente a través del vació a la lámina metálica, pero esto solo sucedía cuando la lámina estaba conectada positivamente.
Edison diseño un circuito que reemplaza la bombilla por un resistor con un voltímetro de DC. Edison obtuvo una patente para este invento en 1884. Aparentemente no tenía uso práctico para esa época. Por lo cual, la patente era probablemente para precaución, en caso de que alguien encontrara un uso al llamado Efecto Edison.
Aproximadamente 20 años después, John Ambrose Fleming (científico asesor de Marconi Company y antiguo empleado de Edison) se dio cuenta que el efecto Edison podría usarse como un radio detector de precisión. Fleming patentó el primer diodo termoiónico en Britain el 16 de noviembre de 1904.
En 1874 el científico alemán Karl Ferdinand Braun descubrió la naturaleza de conducir por una sola dirección de los cristales semiconductores. Braun patentó el rectificador de cristal en 1899. Los rectificadores de óxido de cobre y selenio fueron desarrollados para aplicaciones de alta potencia en la década de los 1930.
El científico indio Jagdish Chandra Bose fue el primero en usar un cristal semiconductor para detectar ondas de radio en 1894. El detector de cristal semiconductor fue desarrollado en un dispositivo práctico para la recepción de señales inalámbricas por Greenleaf Whittier Pickard, quién inventó un detector de cristal de silicio en 1903 y recibió una patente de ello el 20 de noviembre de 2006. Otros experimentos probaron con gran variedad de sustancias, de las cuales se usó ampliamente el mineralgalena. Otras sustancias ofrecieron un rendimiento ligeramente mayor, pero el galena fue el que más se usó porque tenía la ventaja de ser barato y fácil de obtener. Al principio de la era del radio, el detector de cristal semiconductor consistía de un cable ajustable (el muy nombrado bigote de gato) el cual se podía mover manualmente a través del cristal para así obtener una señal óptima. Este dispositivo problemático fue rápidamente superado por los diodos termoiónicos, aunque el detector de cristal semiconductor volvió a usarse frecuentemente con la llegada de los económicos diodos de germanio en la década de 1950.
En la época de su invención, estos dispositivos fueron conocidos como rectificadores. En 1919, William Henry Eccles acuñó el término diodo del griego día, que significa 

Tipos de diodos

  
Los diodos detectores también denominados diodos de señal o de contacto puntual, están hechos de germanio y se caracterizan por poseer una unión PN muy diminuta. Esto le permite operar a muy altas frecuencias y con señales pequeñas. Se emplea por ejemplo, en receptores de radio para separar la componente de alta frecuencia (portadora) de la componente de baja frecuencia (información audible). Esta operación se denomina detección.

 

DIODO RECTIFICADOR
Los diodos rectificadores son aquellos dispositivos semiconductores que solo conducen en
polarización directa (arriba de 0.7 V) y en polarización inversa no conducen. Estas características
son las que permite a este tipo de diodo rectificar una señal.
Los hay de varias capacidades en cuanto al manejo de corriente y el voltaje en inverso que
pueden soportar.

Los diodos, en general se identifican mediante una referencia. En el sistema americano, la
referencia consta del prefijo “1N” seguido del número de serie, por ejemplo: 1N4004. La “N”
significa que se trata de un semiconductor, el “1” indica el número de uniones PN y el “4004” las
características o especificaciones exactas del dispositivo. En el sistema europeo o continental se
emplea el prefijo de dos letras, por ejemplo: BY254. En este caso, la “B” indica el material (silicio) y
la “Y” el tipo (rectificador). Sin embargo muchos fabricantes emplean sus propias referencias, por
ejemplo: ECG581.


DIODO ZÉNER
Un diodo zener es un semiconductor que se distingue por su capacidad de mantener un
voltaje constante en sus terminales cuando se encuentran polarizados inversamente, y por ello se
emplean como elementos de control, se les encuentra con capacidad de ½ watt hasta 50 watt y
para tensiones de 2.4 voltios hasta 200 voltios.
El diodo zener polarizado directamente se comporta como un diodo normal, su voltaje
permanece cerca de 0.6 a 0.7 V.


Los diodos zener se identifican por una referencia, como por ejemplo: 1N3828 ó BZX85, y
se especifican principalmente por su voltaje zener nominal (VZ) y la potencia máxima que pueden
absorber en forma segura sin destruirse (PZ)

DIODO VARACTOR
El diodo varactor también conocido como diodo varicap o diodo de sintonía. Es un
dispositivo semiconductor que trabaja polarizado inversamente y actúan como condensadores
variables controlados por voltaje. Esta característica los hace muy útiles como elementos de
sintonía en receptores de radio y televisión. Son también muy empleados en osciladores,
multiplicadores, amplificadores, generadores de FM y otros circuitos de alta frecuencia. Una
variante de los mismos son los diodos SNAP, empleados en aplicaciones de UHF y microondas.


DIODO EMISOR DE LUZ (LED’s)
Es un diodo que entrega luz al aplicársele un determinado voltaje. Cuando esto sucede,
ocurre una recombinación de huecos y electrones cerca de la unión NP; si este se ha polarizado
directamente la luz que emiten puede ser roja, ámbar, amarilla, verde o azul dependiendo de su
composición.

Los LED’s se especifican por el color o longitud de onda de la luz emitida, la caída de
voltaje directa (VF), el máximo voltaje inverso (VR), la máxima corriente directa (IF) y la intensidad
luminosa. Típicamente VF es del orden de 4 V a 5 V. Se consiguen LED’s con valores de IF desde
menos de 20 mA hasta más de 100 mA e intensidades desde menos de 0.5 mcd (milicandelas)
hasta más de 4000 mcd. Entre mayor sea la corriente aplicada, mayor es el brillo, y viceversa. El
valor de VF depende del color, siendo mínimo para LED’s rojos y máximo para LED’s azules.
Los LED’s deben ser protegidos mediante una resistencia en serie, para limitar la corriente
a través de este a un valor seguro, inferior a la IF máxima.
También deben protegerse contra voltajes inversos excesivos. Un voltaje inverso superior a
5V causa generalmente su destrucción inmediata del LED.





DIODO LÁSER
Los diodos láser, también conocidos como láseres de inyección o ILD’s. Son LED’s que
emiten una luz monocromática, generalmente roja o infrarroja, fuertemente concentrada, enfocada,
coherente y potente. Son muy utilizados en computadoras y sistemas de audio y video para leer
discos compactos (CD’s) que contienen datos, música, películas, etc., así como en sistemas de
comunicaciones para enviar información a través de cables de fibra óptica. También se emplean en
marcadores luminosos, lectores de códigos de barras y otras muchas aplicaciones.




DIODO ESTABILIZADOR
Está formados por varios diodos en serie, cada uno de ellos produce una caída de tensión correspondiente a su tensión umbral.
Trabajan en polarización directa y estabilizan tensiones de bajo valores similares a lo que hacen los diodos Zéner.




DIODO TÚNEL
Los diodos túnel, también conocidos como diodos Esaki. Se caracterizan por poseer una
zona de agotamiento extremadamente delgada y tener en su curva una región de resistencia
negativa donde la corriente disminuye a medida que aumenta el voltaje. Esta última propiedad los
hace muy útiles como detectores, amplificadores, osciladores, multiplicadores, interruptores, etc.,
en aplicaciones de alta frecuencia.


DIODO PIN
Su nombre deriva de su formación P(material P), I(zona intrínseca)y N(material N)
 Los diodos PIN se emplean principalmente como
resistencias variables por voltaje y los diodos Gunn e IMPATT como osciladores. También se
disponen de diodos TRAPATT, BARITT, ILSA, etc.
Son dispositivos desarrollados para trabajar a frecuencias muy
elevadas, donde la capacidad de respuesta de los diodos comunes está limitada por su tiempo de
tránsito, es decir el tiempo que tardan los portadores de carga en atravesar la unión PN. Los más
conocidos son los diodos Gunn, PIN e IMPATT.


DIODO BACKWARD
Son diodos de germanio que presentan en polarización inversa una zona de resistencia negativa similar a las de los diodos túnel.


DIODO SCHOTTKY
Los diodos Schottky también llamados diodos de recuperación rápida o de portadores
calientes, están hechos de silicio y se caracterizan por poseer una caída de voltaje directa muy
pequeña, del orden de 0.25 V o menos, y ser muy rápidos. Se emplean en fuentes de potencia,
sistemas digitales y equipos de alta frecuencia.


Una variante son los diodos back o de retroceso, los cuales tienen un voltaje de
conducción prácticamente igual a cero, pero también un voltaje inverso de ruptura muy bajo, lo cual
lo limita su uso a aplicaciones muy especiales.

FOTODIODOS
Los fotodiodos son diodos provistos de una ventana transparente cuya corriente inversa
puede ser controlada en un amplio rango regulando la cantidad de luz que pasa por la ventana e
incide sobre la unión PN. A mayor cantidad de luz incidente, mayor es la corriente inversa
producida por que se genera un mayor número de portadores minoritarios, y viceversa. Son muy
utilizados como sensores de luz en fotografía, sistemas de iluminación, contadores de objetos,
sistemas de seguridad, receptores de comunicaciones ópticas y otras aplicaciones.